1-[2-[(4-chlorophenyl)thio]ethyl]-3-(4-methylphenyl)thiourea is a complex organic compound with a long and descriptive chemical name. It's often easier to understand its potential importance by breaking down its structure and properties:
**Structure:**
* **Thiourea:** The core of the molecule is a thiourea group, which contains a carbon atom double-bonded to a sulfur atom and single-bonded to two nitrogen atoms. Thioureas are known for their biological activity.
* **Aryl groups:** It has two aromatic rings (benzene rings) attached, one with a chlorine atom (4-chlorophenyl) and the other with a methyl group (4-methylphenyl). These rings are often associated with pharmaceutical properties.
* **Sulphur linkage:** The two aromatic rings are connected via a sulfur atom and a two-carbon chain.
**Potential Importance in Research:**
1. **Pharmacological Activity:** The combination of thiourea and aromatic rings suggests potential pharmacological activity. Thioureas are known to exhibit various biological activities, including:
* **Antimicrobial:** Activity against bacteria, fungi, and viruses.
* **Antioxidant:** Neutralizing free radicals and protecting cells from damage.
* **Anti-inflammatory:** Reducing inflammation and swelling.
2. **Chemical Synthesis:** This molecule could be a valuable starting point for synthesizing new compounds with specific pharmacological properties. The presence of the sulfur linkage provides a point for further modification and functionalization.
3. **Material Science:** Compounds containing sulfur atoms often exhibit interesting properties that could be useful in materials science. For example, they might:
* **Form self-assembled structures:** leading to materials with unique optical or electronic properties.
* **Act as catalysts:** promoting chemical reactions.
**It's Crucial to Note:**
* **Specific Research:** Without knowing the specific research context, it's impossible to say definitively why this compound is important. The research team likely has a specific hypothesis or application in mind.
* **Safety and Toxicity:** The compound should be handled with caution, as the presence of chlorine and sulfur atoms may raise concerns about toxicity.
**To understand the true importance of this compound, more information is needed about the specific research project in which it is being used.**
ID Source | ID |
---|---|
PubMed CID | 3577878 |
CHEMBL ID | 1450430 |
CHEBI ID | 109507 |
Synonym |
---|
MLS000685190 |
n-{2-[(4-chlorophenyl)thio]ethyl}-n'-(4-methylphenyl)thiourea |
smr000311428 |
CHEBI:109507 |
AKOS001592268 |
1-[2-(4-chlorophenyl)sulfanylethyl]-3-(4-methylphenyl)thiourea |
HMS2706E04 |
CHEMBL1450430 |
1-{2-[(4-chlorophenyl)sulfanyl]ethyl}-3-(4-methylphenyl)thiourea |
Q27188654 |
1-[2-[(4-chlorophenyl)thio]ethyl]-3-(4-methylphenyl)thiourea |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 10.0000 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 11.2202 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 8.9125 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 35.4813 | 0.1800 | 13.5574 | 39.8107 | AID1468 |
Smad3 | Homo sapiens (human) | Potency | 15.8489 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 0.5012 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 39.8107 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 29.0929 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 22.3872 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 89.1251 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 0.8428 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 20.5962 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 35.4813 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 10.0000 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) | Potency | 2.8184 | 3.9811 | 46.7448 | 112.2020 | AID720708 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
guanyl-nucleotide exchange factor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
cAMP binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein-macromolecule adaptor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
small GTPase binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
cytosol | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
hippocampal mossy fiber to CA3 synapse | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |